To prove:
AQ2 + BP2 = AB2 + PQ2
Proof: In right ∆ACQ, we have
AQ2 = AC2 + CQ2 ...(i)
[Using Pythagoras theorem]
In right ∆PCB, we have
BP2 = PC2 + BC2 ...(ii)
[Using Pythagoras theorem]
Adding (i) and (ii), we get
AQ2 + BP2 = (AC2 + BC2) + (PC2 + CQ2)
⇒ AQ2 + BP2 = AB2 + PQ2 Proved.
Const: Draw AE ⊥ BC
Proof : In ∆ABE and ∆ACE, we have
AB = AC [given]
AE = AE [common]
and ∠AEB = ∠AEC [90°]
Therefore, by using RH congruent condition
∆ABE ~ ∆ACE
⇒ BE = CE
In right triangle ABE.
AB2 = AE2 + BE2 ...(i)
[Using Pythagoras theorem]
In right triangle ADE,
AD2 = AE2 + DE2
[Using Pythagoras theorem]
Subtracting (ii) from (i), we get
AB2 - AD2 = (AE2 + BE2) - (AE2 + DE2)
AB2 - AD2 = AE2 + BE2 - AE2 - DE2
⇒ AB2 - AD2 = BE2 - DE2
⇒ AB2 - AD2 (BE + DE) (BE - DE)
But BE = CE [Proved above]
⇒ AB2 - AD2 = (CE + DE) (BE - DE)
= CD.BD
⇒ AB2 - AD2 = BD.CD Hence Proved.
In the given Fig., ∠ACB = 90° and CD ⊥ AB. Prove that
We know that,
If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.
And
From (i) and (ii)
Hence,
Let BQ = QP = PC = x
Then, BP = 2x and BC = 3x
In ∆ABQ,
AQ2 = AB2 + BQ2
[Using Pythagoras theorem]
⇒ AQ2 = AB2 + x2 ...(i)
In ∆ABP,
AP2 = AB2 + BP2
[Using Pythagoras theorem]
⇒ AP2 = AB2 + (2x)2
⇒ AP2 = AB2 + 4x2 ...(ii)
In ∆ABC,
AC2 = AB2 + BC2
[Using Pythagoras theorem]
⇒ AC2 = AB2 + (3x)2
⇒ AC2 = AB2 + 9x2 ...(iii)
Multiplying (ii) by 8
8AP2 = 8AB2 + 32x2 ...(iv)
Multiply (iii) by 3
3AC2 = 3AB2 + 21x2 ...(v)
Multiply (i) by ‘5’.
5AQ2 = 5AB2 + 5x2 ...(vi)
Adding, (v) and (vi), we get
3AC2 + 5AQ2 = (3AB2 + 5AB2)+ (27x2 + 5x2)
⇒ 3AC2 + 5AQ2 = 8AB2 + 32x2 [from (iv)]
3AC2 + 5AQ2 = 8AP2.